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J N M O.tl Va tl O n 4 Simple Motivation to Push AO to Shorter Wavelengths

A great deal of information about the process of grain growth and planet formation can be revealed by the study
of circumstellar disks in the near IR with high spatial resolution adaptive optics techniques using adaptive secondary mirrors (ASMs).
With current ASM technology on the MMT, we are able to probe the existence of water ice (likely a key component of planet
formation) and average grain properties of circumstellar disks. This method, pioneered by Honda et al. (2009), takes advantage of
the high albedo of icy circumstellar disks at the 3.09micron ice feature relative to the nearby continuum to constrain the water ice
abundance and average grain properties of the disk. We will present the results of our pilot study on GM Aur. With the success of
the LBT ASM (Esposito et al. 2010), the future of disk imaging at the high spatial resolutions achievable by well-sampled (d~21cm),
high actuator count adaptive secondary mirrors appears bright. In fact, the simulated performance of the soon-to-be-integrated
Magellan ASM reveals that the system is likely to achieve moderate Strehls and high spatial resolutions (¥20mas) into the visible
wavelength regime. This gives the system the potential to reveal disk morphology on scales as small as 2-3AU, allowing an exciting
potential to resolve heretofore unresolved disk features such as disk gaps where planets may be forming.
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